STUDY ON COMFORT CHARACTERISTICS OF

HIGH ACTIVE SPORTSWEAR

by

MANPREET MANSHAHIA

Department of Textile Technology

Submitted

in fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

NEW DELHI – 110016, INDIA

APRIL 2014

CERTIFICATE

This is to certify that the thesis titled "**Study on Comfort Characteristics of High Active Sportswear**" being submitted by **Mrs. Manpreet Manshahia** to the Indian Institute of Technology Delhi, for the award of the degree of **Doctor of Philosophy**, is a record of bonafide research work carried out by her. She has worked under my guidance and supervision and fulfilled the requirements for the submission of the thesis, which has attained the standard required for the Ph.D. degree of this institute.

The results contained in this thesis have not been submitted, in part or in full, to any other university or institute for the award of any degree of diploma.

Date:

Place: Delhi

Dr. Apurba Das

Professor

Department of Textile Technology Indian Institute of Technology Delhi New Delhi – 110016

ACKNOWLEDGEMENTS

First of foremost, I am extremely grateful to my supervisor, Prof. Apurba Das, IIT Delhi, who inspired me to take up my research topic in this area. His encouraging words always motivated me throughout the course of research work. It has been very learning yet enjoyable experience to work under his guidance. It would not have been possible for me to complete my research work on part time basis without his continuous support and patience.

I would like to thank all my SRC members, Prof. V K Kothari, Prof. R S Rengaswamy and Prof. M R Ravi, IIT Delhi, for their valuable suggestions and kind help throughout my research work.

I am also thankful to Prof. R Alagirusamy, Prof. R K Khanna, IIT Delhi for their permission to work and use various facilities in their respective labs. I would like to extend my thanks to present departmental head, Prof. R Chattopadhya and previous head, Prof. K Sen for providing required help from department to complete this research work.

I thank all the staff members of Department of Textile Technology, IIT Delhi, for their well needed help and support. I would like to specially thank Mr. Biswal, Mr. Rajkumar, Mr. Siyaram Sharma and Mr. Manjeet singh for extending their help in various sampling and testing activities.

I mention my special thanks to Dr. Shabridharan K., Dr. B Kumar and Dr. B Das for their generous support and advice. They helped me to understand various laboratory apparatus and research activities. I am thankful to all my friends, at IIT Delhi, for helping me to keep my morale up during the whole tenure of my work. I would like to specially mention Yamini Jhanji, Rajat Kumar Baldua, Ramamoorthy, Krishnaswamy, Ashish Dua, Renuka, Rashmi Thakur, Nabo Barman, Mahadeb Bar for being wonderful support throughout.

I would also like to acknowledge my previous employer Prof. R Jamdagni, Director, TIT&S, Bhiwani and my present employer, Prof. P K Joshi, Director, ASFT, Amity University, Noida for their permission and support to complete my research work with other job responsibilities at work.

I am grateful to my mother, Mrs. Shubhkarn Kaur, for her love and encouragement in all spheres of my life. Finally, I thank my best friend and husband, Mr. Gurpreet Singh, for always being so understanding and supportive and providing me all emotional support during course of work.

In the end, I would like to thank all the wonderful people whom I have come across during the tenure of my research work.

Manpreet Manshahia

ABSTRACT

In high active sports, high amount of metabolic heat is generated due to strenuous physical activity. It leads to increased heat and sweat generation so thermo-physiological comfort becomes most important characteristic for high active sportswear. Thermo-physiological comfort deals with heat and moisture transmission through the clothing which determines the comfort sensation and may affect the performance of player. The other important comfort characteristic of high active sportswear is ability to stretch so that no restriction is imposed to movements of body limbs. The focus of this thesis is to study the effect of various parameters on comfort characteristics of high active sportswear.

The impact of various important clothing related parameters on thermo-physiological comfort characteristics of commercial active sportswear has been examined. It has been observed that various structural characteristics of fabrics, i.e. structure type, fabric porosity, fabric tightness, fabric thickness, and the structural characteristics of filaments, i.e. the cross-sectional shape of filaments and filament fineness, have considerable effects on heat and moisture transfer through polyester knitted sportswear. Moisture management properties of plated knitted sportswear have been studied by taking various combinations of profiled polyester filament yarn in plating construction. It has been found that the effect of shape factor of filament on inner side is more pronounced as compared to shape factor of filament on liquid moisture management of fabric.

Performance of players can be improved, by inducing enhanced compression to limbs, using compression athletic wear (CAW). Interface pressure profile under dynamic conditions and elastic recovery of compression athletic wear (CAW) has been studied. Fabrics knitted with lower loop length, coarser elastane and modified cross-sectional shape of polyester filament show higher interface pressure with lower rate of pressure drop and good elastic recovery. Incorporating elastane in structure to get desired compression may affect the thermo-physiological comfort of compression athletic wear (CAW). Thermo-physiological comfort characteristics of compression sportswear have been studied by incorporating elastane using two approaches, i.e. core-spun yarn and plating construction. Permeability to air and moisture vapour as well as liquid moisture transmission properties of fabric found to be higher at lower range of elastane content and elastane stretch of core-spun elastane yarn. In second approach, thermo-physiological comfort characteristics of polyester elastane plated fabric mainly affected by crosssectional shape of polyester yarn and found to deteriorate with increase in elastane linear density and fabric tightness.

Mathematical models have also been developed to predict the liquid moisture transmission properties of knitted structure which will help to design the high active sportswear to achieve the maximum comfort sensation. Capillary flows at two levels of porosity, i.e. macro scale and micro scale have been considered to develop mathematical models. Macro scale model has been developed assuming sinusoidal irregular capillary flow through capillaries formed between yarns in the fabric. Micro scale capillary model has been developed considering capillary progression, through capillaries formed within yarn, equivalent to tortuous stream tube. A good correlation has been found between experimental equilibrium wicking height and predicted equilibrium wicking height by micro scale capillary model.

vi

CONTENTS

Page No.

Certificate	i
Acknowledgements	iii
Abstract	v
Contents	vii
List of figures	XV
List of tables	xxi

Chapter 1 Introduction

1.1	Introductio	'n	1
1.2	Aim of Inv	estigation	3
	1.2.1	Objectives	4
1.3	Layout of 7	Thesis	4

Chapter 2 Review of Literature

2.1	Introduc	tion	7
2.2	Functional Requirements of High Active Sportswear		8
2.3	Comfort	Properties of High Active Sportswear	9
	2.3.1	Thermo-physiological comfort	9
	2.3.2	Skin sensorial comfort	12
	2.3.3	Ergonomic wear comfort	12

	2.3.4	Psychological comfort	13
2.4	Principle	es Involved in Moisture Vapour Transmission	13
2.5	Principle	es Involved in Liquid Moisture Transmission	15
2.6	Mathem	atical Models to Predict Liquid Moisture Transmission	16
	Profile		
2.7	Evaluati	on Methods of Comfort Properties of Sportswear	19
2.8	Effect of	f Various Parameters on Thermo-physiological Comfort	21
	2.8.1	Type and geometry of fibre	21
	2.8.2	Yarn parameters	24
	2.8.3	Fabric structure	24
		2.8.3.1 Single jersey knit structures	24
		2.8.3.2 Two layer knitted fabric	25
		2.8.3.3 Biomimetics structure	27
	2.8.4	Finishing treatment	29
2.9	Compre	ssion Athletic Wear	31
	2.9.1	Effect of various parameter on performance of	31
	compre	ssion athletic wear	
	2.9.2	Effect of various parameters on comfort of compression	33
	athletic	wear	
2.10	Innovat	ive Sportswear Products	35

Chapter 3 Thermo-physiological Comfort Characteristics: Heat and

Moisture Vapour Transmission

41

3.2	Materia	ls and Methods	42
	3.2.1	Materials	42
	3.2.2	Test methods Fabric particulars	43
		3.2.2.1 Fabric particulars	43
		3.2.2.2 Air permeability	48
		3.2.2.3 Relative water vapour permeability	48
		3.2.2.4 Thermal resistance	50
3.3	Results	and Discussion	51
	3.3.1	Fabric structure	51
	3.3.2	Interlock fabric structure	53
	3.3.3	Float-plated fabrics	57
	3.3.4	Two-layer fabrics	57
3.4	Conclus	sions	58

Chapter 4 Thermo-physiological Comfort Characteristics: Liquid Water

Transmission

4.1	Introduc	tion	61
4.2	Material	and Methods	62
	4.2.1	Materials	62
	4.2.2	Test methods	63
		4.2.2.1 Fabric particulars	63
		4.2.2.2 Vertical wicking test	63
		4.2.2.3 In-plane wicking test	63
		4.2.2.4 Absorption	64

		4.2.2.5 Drying time	65
4.3	Results	and Discussions	65
	4.3.1	Vertical wicking	66
	4.3.2	In-plane wicking	70
	4.3.3	Absorbency	74
4.4	Conclus	ions	78

Chapter 5 Moisture Management of Plated Knitted Fabrics

5.1	Introduc	ction	81
5.2	Material	ls and Methods	82
	5.2.1	Materials	82
	5.2.2	Test methods	82
		5.2.2.1 Yarn and fabric parameters	82
		5.2.2.2 Filament contact angle	84
		5.2.2.3 Moisture management properties	85
		5.2.2.4 Absorption	90
	5.2.3	Statistics	92
5.3	Result a	nd Discussion	93
	5.3.1	Moisture management properties	93
		5.3.1.1 Wetting time	93
		5.3.1.2 Absorption rate	95
		5.3.1.3 Maximum wetted radius and spreading speed	95
		5.3.1.4 One way transport capacity (OWTC)	97
		5.3.1.5 Overall moisture management capacity (OMMC)	99

	5.3.2	Liquid water absorption	100
		5.3.2.1 Bulk absorption	100
		5.3.2.2 Single point absorption	102
5.4	Conclus	sions	104

Chapter 6 Thermo-physiological Comfort Characteristics of Core-spun

Elastane Knitted Fabrics

6.1	Introduc	ction	107
6.2	Material	ls and Methods	108
	6.2.1	Materials	108
		6.2.1.1 Design of experiment	108
		6.2.1.2 Sample preparation	108
	6.2.2	Test methods	110
		6.2.2.1 Fabric particulars	110
		6.2.2.2 Air permeability	111
		6.2.2.3 Relative water vapour permeability	111
		6.2.2.4 Thermal resistance	111
		6.2.2.5 Vertical wicking test	112
		6.2.2.6 Absorption	112
		6.2.2.7 Moisture management properties	113
	6.2.3	Statistics	113
6.3	Results	and Discussions	114
	6.3.1	Physical properties of fabric	114
	6.3.2	Air permeability	117

	6.3.3	Relative water vapour permeability	117
	6.3.4	Thermal resistance	120
	6.3.5	Vertical wicking	121
	6.3.6	Absorption	121
	6.3.7	Overall moisture management capacity (OMMC)	124
6.4	Conclus	ions	127

Chapter 7 Thermo-physiological Comfort Characteristics of Polyester-

elastane Plated Knitted Fabrics

7.1	Introduction		129
7.2	Material	and Methods	130
	7.2.1	Materials	130
	7.2.2	Testing procedures	130
		7.2.2.1 Yarn and fabric particulars	130
		7.2.2.2 Air permeability	132
		7.2.2.3 Heat and moisture vapour transmission	132
		7.2.2.4 Liquid moisture transmission	135
		7.2.2.5 Moisture management properties	138
	7.2.3	Statistics	138
7.3	Results and Discussion		140
	7.3.1	Air permeability	140
	7.3.2	Thermal properties	142
	7.3.3	Moisture vapour transmission	143
	7.3.4	Liquid moisture transmission	145

	7.3.5	Moisture management properties	150
7.4	Conclus	ions	152

Chapter 8 Dynamic Interface Pressure Characteristics of Compression

Athletic Wear

8.1	Introduction		155
8.2	Material and Methods		156
	8.2.1	Sample preparation	156
	8.2.2	Test methods	156
		8.2.2.1 Yarn and fabric properties	156
		8.2.2.2 Fabric interface pressure	157
		8.2.2.3 Fabric elastic recovery	159
8.3	Result a	and Discussion	160
	8.3.1	Effect of loop length	163
	8.3.2	Effect of filament cross sectional shape	166
	8.3.3	Effect of elastane linear density	169
8.4	Conclusions		170

Chapter 9 Mathematical Model to Predict Vertical Wicking Profile of Single

Jersey Plain Weft Knitted Structure

9.1	Introduction	173
9.2	Symbols used	175
9.3	Model Development	176

	9.3.1	Macro flow in knitted structure	176
	9.3.2	Micro flow within yarn in knitted structure	180
		9.3.2.1 Calculations of vertical wicking of single jersey	180
		plain knitted fabric considering capillary flow as tortuous	
		stream tubes	
		9.3.2.2 Calculations of vertical wicking of single jersey	184
		plain knitted fabric along the wale considering inclined	
		tube geometry	
9.4	Experin	nental Validation	187
	9.4.1	Materials	187
	9.4.2	Method to measure vertical wicking height	189
	9.4.3	Statistics	189
9.5	Result a	esult and Discussion	
9.6	Conclusions		197

Chapter 10 Conclusions

10.1 Background	199
10.2 Summary	199
10.3 Contribution to Science in General	203
10.4 Scope of Future Work	203
References	
Appendix	
List of publication	
Bio-data	